

Advanced Technologies for Groundwater Resources

3-D Microemulsion (3DMe)[™]

INSTALLATION INSTRUCTIONS

High-Volume, Wide-Area, Micro-Emulsion Application

Introduction

3-D Microemulsion $(3DMe)^{TM}$, a form of HRC Advanced[®], should <u>ONLY</u> be applied as a highvolume, micro-emulsion. In this form it offers greater physical distribution of the 3DMe material across a larger potential radius from a single injection point. The production of a 3DMe emulsion involves the on-site, volumetric mixing of 10 parts water with 1 part delivered 3DMe concentrate to form the injection-ready 3DMe micro-emulsion. This micro-emulsion suspension can then be injected directly or further diluted to a predetermined ratio of 3DMe to water. The following instructions provide details in the production and installation of the 3DMe microemulsion.

Material Overview Handling and Safety

3DMe concentrate is shipped and delivered in 4.25-gallon buckets. Each bucket has a gross weight of approximately 32 pounds. Each bucket contains 30 pounds of 3DMe concentrate (net weight) and a nominal volume of 3.7 gallons. At room temperature, 3DMe concentrate is a liquid material with a viscosity of approximately 500 centipoise, roughly the equivalent of pancake syrup. The viscosity of 3DMe is not temperature sensitive above 50 °F (10 °C). However, below 50 °F the viscosity may increase significantly. If the user plans to apply the product in cold weather, consideration should be given to heating the material to above 60 °F so that it can be easily handled. 3DMe concentrate should be stored in a warm, dry place that is protected from direct sunlight. It is common for stored 3DMe concentrate to settle somewhat in the bucket, a quick pre-mix stir by a hand held drill with a paint or "jiffy mixer" attachment will rapidly re-homogenize the material. 3DMe concentrate is non-toxic, however field personnel should take precautions while handling and applying the material. Field personnel should use appropriate personal protection equipment (PPE) including eye protection. Gloves should be used as appropriate based on the exposure duration and field conditions. A Material Safety Data Sheet is provided with each shipment. Personnel who operate field equipment during the installation process should have appropriate training, supervision, and experience and should review the MSDS prior to site operations.

Micro-Emulsion Production 3DMe to Water Ratio

3DMe concentrate should be mixed with water on a volume to volume (v/v) basis to produce a micro-emulsion starting at 10 parts water: 1 part 3DMe. Although micro-emulsions can be easily produced using greater water volumes than 10 parts, e.g. 20 to 50 parts water to 1 part 3DMe, the initial micro-emulsion should never be produced below a ratio of less than 10 parts water: 1 part 3DMe v/v. WARNING: Do not attempt to produce a micro-emulsion at less than 10 parts water to 1 part 3DMe ratio v/v. This will produce an undesirable and unstable solution.

The field production of 3DMe micro-emulsion is a very simple procedure; however, it is critical that the user follow the mixing directions outlined below. <u>Never attempt to add water to the 3DMe as this will produce an undesirable and unstable large emulsion.</u> Always add the 3DMe to a large volume of water.

As indicated previously the 10:1 ratio of water to 3DMe v/v is the minimum water ratio that can be used, a greater ratio (more dilute solution) can easily be achieved and is governed by: A) the volume of 3DMe required to treat the estimated contaminant mass, B) the pore volume in which the material is applied, C) the time available for installation (gallons/pump rate), and C) the estimated volume of 3DMe micro-emulsion that the target zone will accept over the time period allocated for installation.

Conceptually, although a higher volume of water to volume of 3DMe will produce a larger volume of the suspension, it will lower the concentration of 3DMe per gallon of solution. Thus, the benefit of using a high water/3DMe v/v ratio in order to affect a greater pore volume of the subsurface aquifer is offset by the dilution of the 3DMe per unit volume of suspension as well as by the limitations of the subsurface hydraulic conductivity and effective porosity (capacity of the aquifer to accept the volume of 3DMe micro-emulsion).

It is important that the user plan in advance the v/v 3DMe/water ratio to be employed at a project site. The resulting volume of solution will dictate the site water requirements and the time required for injection, etc. If upon injection of greater than 10:1 3DMe micro-emulsion, the subsurface does not readily accept the volume of solution as designed, the user can adjust downward the v/v water to 3DMe ratio until a more concentrated suspension is produced (this solution should never drop below the required 10 parts water:1 part 3DMe v/v production ratio). For more information on designing a 3DMe/water ratios to meet specific site conditions, please contact Regenesis Technical Services.

Direct Push Application Requirements

One of the best methods to deliver the 3DMe micro-emulsion into the subsurface is to pressure inject the solution through direct-push rods using hydraulic equipment, or to pressure inject/gravity feed the micro-emulsion into the dedicated injection wells. The use of low cost push points or temporary injection points allows the applier to more cost effectively distribute the 3DMe material across shallow sites by employing multiple points per site. In the case of treating deep aquifer sites, the use of the micro-emulsion applied via dedicated injection wells is likely to be the most cost effective remediation approach. Please note that this set of instructions

is specific to direct-push equipment. Please contact Regenesis Technical Services to assist you with dedicated injection well applications.

In general, Regenesis strongly recommends application of the 3DMe micro-emulsion using an injection pump with a minimum delivery rate of three gallons per minute (gpm) and a pressure rating of between 150 to 200 pounds per square inch (psi). **Note: the <u>injection pump</u>** requirements are different than the requirements of the mixing pump (see Mixing to Generate 3DMe Micro-emulsion). High pressure, positive displacement pumps and progressive cavity pumps are appropriate for injecting 3DMe. For low permeability lithologies (clay, silt) higher pressure pumps (800-1600 psi) may be necessary, while for more permeable lithologies (gravel, sand) a lower pressure pump may be adequate. Examples of appropriate pumps are: Rupe Models 6-2200, 9-1500 and 9-1600 (positive displacement), Geoprobe[®] GS-2000 (positive displacement) and DP-800 (progressive cavity), Yamada (air diaphragm), Moyno (progressive cavity), and Wilden (air diaphragm). Delivery rate is a critical factor in managing installation time and costs. Generally, higher delivery rates (>6 gpm) are more cost effective for these types of applications but pump selection should be on a site specific basis and account for the volume of 3DMe solution and specific aquifer conditions present at the site.

The installation of the 3DMe micro-emulsion should span the entire vertical contaminated saturated thickness. If the vertical extent of the application is confined to a limited interval, then the micro-emulsion should be placed across a vertical zone extending a minimum of one-foot above and one-foot below the screened interval of monitoring wells that are being used to evaluate the performance of the project.

Producing the 3DMe Micro-Emulsion

The application of 3DMe requires the creation of a micro-emulsion. Technically the optimal suspension is an 3DMe-in-water suspension containing micro-emulsions. Before beginning the mixing procedure the user should have in mind the desired water to 3DMe ratio v/v desired.

It is critical that the micro-emulsion be produced using a high-shear apparatus such as a high speed centrifugal pump. The shearing provided by the vanes in these types of pumps is sufficient to form and maintain a homogeneous milky emulsion. <u>This pump will be a different</u> pump than that used to inject the 3DMe micro-emulsion into the subsurface. If the user is uncertain as to requirements for the pump or the applicability of a certain pump, please contact Regenesis Technical Services. Regenesis typically suggests using a water trailer/pump apparatus commonly found at equipment rental facilities. Regenesis recommends using a Magnum Products LLC model MWT500 or equivalent water trailer (fitted with centrifugal recirculation pump). This "trash pump" or transfer pump is an ideal high shear pump and the water tank (400 gallons) serves as an excellent mixing tank.

To ensure that proper micro-emulsion suspension is generated Regenesis suggests a two-step process that simply requires mixing at least 10 parts water to 1 part 3DMe concentrate using water at a temperature $\geq 60^{\circ}$ F.

Step 1) Regenesis recommends that the 3DMe concentrate in each bucket be rehomogenized using a drill equipped with a paint or "jiffy" mixer attachment as minor settling may have occurred during shipment.

Step 2) to calculate the volume of water necessary to produce a 10:1 v/v micro-emulsion, each bucket of 3DMe concentrate containing 3.7 gallons of material should be mixed with 37 gallons of water.

<u>Example:</u> 6 buckets x 3.7 gallons 3DMe concentrate/bucket yields a total of 22.2 gallons of 3DMe concentrate. Thus, a 10:1 v/v solution will require 222 gallons of water (22.2 gallons 3DMe concentrate x 10 gallons water yields 222 gallons of water). A nominal total volume micro-emulsion would result from the summation of the 3DMe concentrate volume (22.2 gallons) and the water volume (222 gallons). This yields a total fluids delivery volume of approximately 244 gallons.

The previously calculated water volume (222 gallons) should be transferred into an appropriately sized mixing tank. The water should be circulated by the high shear centrifugal pump and each of the six 3DMe buckets <u>slowly poured</u> into the tank. Each bucket of 3DMe concentrate should be poured at a <u>slow rate (approx. 1 minute per bucket)</u> and the contents of the tank continually recirculated using the high hear centrifugal pump. A period of 1-2 minutes should be allowed between addition of each subsequent bucket of 3DMe concentrate to allow the centrifugal pump to continue to shear and mix the water/3DMe concentrate. Upon addition of the entire volume of 3DMe concentrate the pump should remain on to allow the solution mixture to recirculate. The recirculation of the 3DMe micro-emulsion should continue until the material is injected to maintain micro-emulsion consistency.

Application of Micro-Emulsion Using Direct-Push Methods

- 1) Prior to the installation of the micro-emulsion, any surface or overhead impediments should be identified as well as the location of all underground structures. Underground structures include but are not limited to: utility lines, tanks, distribution piping, sewers, drains, and landscape irrigation systems.
- 2) The planned installation locations should be adjusted to account for all impediments and obstacles.
- 3) Pre-mark the installation locations, noting any points that may have different vertical application requirements or total depth.
- 4) Set up the direct-push unit over each specific point and follow the manufacturer's standard operating procedures (SOP). Care should be taken to assure that probe holes remain vertical.
- 5) For most applications, Regenesis suggests using drive rods with an O.D. of at least 1.25inches and an I.D. of at least 0.625-inches I.D (Geoprobe or equivalent). However, the lithologic conditions at some sites may warrant the use of larger 2.125-inch O.D./1.5-inch I.D. drive rods.

- 6) The most typical type of sub-assembly currently being used is designed for 1.25-inch directpush rods and is manufactured by Geoprobe. Other brands of drive rods can also be used but require the fabrication of a sub-assembly that allows for a connection between the pump and drive rod.
- 7) For mixing large volumes of the micro-emulsion, Regenesis recommends using a Magnum Products LLC model MWT500 water trailer (fitted with centrifugal recirculation pump) or equivalent unit. However, single large volume poly tanks are adequate. We suggest filling the tank with an appropriate quantity (e.g. from the example above 222 gallons) of water before start of mixing operations. The tank should be configured so that both a hose and a fire hydrant or larger water tank can be connected to it simultaneously and filled with water quickly and easily. This will dramatically reduce the time needed to fill the tank with mixing water.
- 8) Regenesis highly recommends preparing the micro-emulsion before pushing any drive rods into the subsurface. NOTE: it is best if the micro-emulsion is produced a single day application volumes.
- 9) After the micro-emulsion mixing/shearing step has been completed as described above, the micro-emulsion is ready to be applied. Check to see if a hose has already been attached to the inlet side of the centrifugal pump. If this has not been done, do so now.
- 10) If a non-water trailer tank is being used for mixing the micro-emulsion a stand alone centrifugal pump and hose system should be used for the shearing and mixing operations.
- 11) Advance drive rods through the ground surface, as necessary, following SOP.
- 12) Push the drive rod assembly with an expendable tip to the desired maximum depth. Regenesis suggests pre-counting the number of drive rods needed to reach depth prior to starting injection activities to avoid any miscalculations.
- 13) After the drive rods have been pushed to the desired depth, the rod assembly should be withdrawn three to six inches. The expendable tip can be dropped from the drive rods, following SOP.
- 14) If an injection tool is used instead of a direct-push rod with an expendable tip, the application of material can take place without any preliminary withdrawal of the rods.
- 15) In some cases, introduction of a large column of air may be problematic. This is particularly the case in deep injections (>50 ft) with large diameter rods (>1.5-inch O.D.). To prevent the injection of air into the aquifer during the application, fill the drive rods with 3DMe emulsion after they have been pushed to the desired depth and before the disposable tip has been dropped or before the injection tip is operational.

- 16) Transfer the appropriate quantity of the micro-emulsion from the water trailer to the working/application pump hopper or associated holding tank.
- 17) A volume check should be performed prior to the injection of the micro-emulsion. Determining the volume discharged per unit time/stroke using a graduated bucket and stopwatch or stroke counter.
- 18) Start the pump and use the graduated bucket to determine how many gallons of microemulsion are delivered each minute or stroke per unit volume.
- 19) Connect the 1.25-inch O.D., 1-inch I.D. delivery hose to the pump outlet and the appropriate sub-assembly. Circulate the micro-emulsion through the hose and the sub-assembly to displace any air present in the system.
- 20) Connect the sub-assembly to the drive rod. After confirming that all of the connections are secure, pump the micro-emulsion through the delivery system to displace any water or other fluids in the rods.
- 21) The pump engine RPM and hydraulic settings should remain constant throughout the day to maintain a constant discharge rate.
- 22) The material is now ready to be installed in the subsurface. Use the pumps discharge rate as calculated in step 18 to determine the withdrawal rate of the drive rods needed for the application.
- 23) Slowly withdraw the drive rods using Geoprobe Rod Grip or Pull Plate Assembly (Part AT1222-For 1.25-inch drive rods). While slowly withdrawing single lengths of drive rod (three or four feet), pump the pre-determined volume of micro-emulsion into the aquifer across the desired treatment interval.
- 24) Remove one or two sections of the drive rod at a time. The drive rod may contain some residual material so Regenesis suggests placing it in a clean, empty bucket and allowing the material to drain. Eventually, the material recovered in the bucket should be returned to the pump hopper for reuse.
- 25) Observe any indications of aquifer refusal such as "surfacing" around the injection rods or previously installed injection points. If aquifer acceptance appears to be low, allow enough time for the aquifer to equilibrate prior to removing the drive rod.
- 26) Repeat steps 19 through 25 until treatment of the entire contaminated vertical zone has been achieved.
- 27) Install an appropriate seal, such as bentonite, above the micro-emulsion injection zone. The seal should span across the entire vadose zone. Depending on soil conditions and local regulations, a bentonite seal using chips or pellets can be used. If the injection hole remains open more than three or four feet below the ground surface sand can be used to fill the hole and provide a base for the bentonite seal. The installation of an appropriate seal assures that

the micro-emulsion remains properly placed and prevents contaminant migration from the surface. If the micro-emulsion continues to "surface" up the direct-push borehole, an oversized disposable drive tip or wood plug/stake can be used to temporarily plug the hole until the aquifer equilibrates and the material stops surfacing.

- 28) Remove and clean the drive rods as necessary.
- 29) Finish the borehole at the surface as appropriate (concrete or asphalt cap, if necessary).
- 30) Periodically compare the pre- and post-injection discharge rates of the micro-emulsion in the pump hopper or holding tank using any pre-marked volume levels. If volume level indicators are not on the pumps hopper or holding tank use a pre-marked dipstick or alternatively temporary mark the hopper or holding tank with known quantities/volumes of water using a carpenter's grease pencil (Kiel crayon).
- 31) Move to the next probe point, repeating steps 11 through 29.

Helpful Hints

1) Application in Cold Weather Settings

As discussed in the Material Overview, Handling, and Safety section, cold weather tends to increase the viscosity of 3DMe as well as decrease the ease of micro-emulsion formation. To optimize an application in cold weather settings Regenesis recommends maintaining the 3DMe concentrate and the associated water at a temperature $\geq 60^{\circ}$ F (16°C). The following procedures can be used to facilitate the production and installation of a 10:1 v/v 3DMe micro-emulsion.

- Raise and maintain the temperature of the HRC-A to at least 60°F (16°C) prior to mixing with water. A hot water bath can be used to heat up the 3DMe concentrate buckets. A Rubbermaid fiberglass Farm Trough Stock Tank (Model 4242-00-GRAY) has been used for this process. This trough can hold up to 16 buckets of 3DMe concentrate.
- Hot water (approximately 130-170°F or 54-77°C) should be added to the tank after the buckets of 3DMe have been placed inside. The hot water should be delivered from a heated pressure washer (Hotsy[®] Model No. 444 or equivalent) or steam cleaner unit.
- It is equally critical that a moderate water temperature (>60°F or 16°C) be used in the production of the micro-emulsion. If on-site water supply is below 60°F use a hot water or steam cleaner to generate a small volume (e.g. 5-10% of total water volume) of hot water (130–170°F/54-77°C). This small volume of hot water should be added to remaining cold water volume to raise the total volume temperature to >60°F. When the 3DMe concentrate and water each reach a minimum temperature of 60°F or 16°C the two materials are ready for mixing.
- Upon achieving a minimum temperature of 60°F or 16°C (approximately 10-20 minutes). When the 3DMe and the associated water volumes have reached a minimum temperature of 60°F or 16°C (approximately 10-20 minutes) they are ready for mixing.
- In exceptionally harsh winter temperature settings use of a separate insulated pump containment structure and insulated delivery hoses may be necessary.

- Use a pump with a heater unit.
- Periodically check the temperature of the material in the hopper.
- Re-circulate the 3DMe micro-emulsion through the pump and hose to maintain temperature adequate temperatures.
- Care should be taken to avoid the re-circulation of material volumes that exceed the volume of the pump hopper or holding tank.

Table 1: Equipment Volume and 3DMe Micro-Emulsion Weight per UnitLength of Hose (Feet)

Equipment	Volume	Product Weight
1-inch OD; 0.625-inch ID hose (10 feet)	0.2 gallon	1.6 lbs.
1.25-inch OD; 0.625-inch ID drive rod (3 feet):	0.05 gallon	0.4 lbs.
1.25-inch OD; 0.625-inch ID drive rod (4 feet):	0.06 gallon	0.5 lbs.

2) Pump Cleaning

For best results, use a heated pressure washer to clean equipment and rods periodically throughout the day. Internal pump mechanisms and hoses can be easily cleaned by re-circulating a solution of hot water and a biodegradable cleaner such as Simple Green through the pump and delivery hose. Further cleaning and decontamination (if necessary due to subsurface conditions) should be performed according to the equipment supplier's standard procedures and local regulatory requirements.

NOTE:

Before using the Rupe Pump, check the following:

- Fuel level prior to engaging in pumping activities (it would be best to start with a full tank)
- Remote control/pump stroke counter LCD display [if no display is present, the electronic counter will need to be replaced (Grainger Stock No. 2A540)]

Monitor pump strokes by observing the proximity switches (these are located on the top of the piston).

3) Bedrock Applications

When contaminants are present in competent bedrock aquifers, the use of direct-push technology as a delivery method is not possible. *Regenesis is in the process of developing methods for applying 3DMe via boreholes drilled using conventional rotary techniques.* To develop the best installation strategy for a particular bedrock site, it is critical that our customers call the Technical Services department at Regenesis early in the design process.

The micro-emulsion can be applied into a bedrock aquifer in cased and uncased boreholes. The micro-emulsion can be delivered by simply filling the borehole without pressure or by using a

single or straddle packer system to inject the material under pressure. Selection of the appropriate delivery method is predicated on site-specific conditions. The following issues should be considered in developing a delivery strategy:

- Is the aquifer's hydraulic conductivity controlled by fractures?
- Backfilling may be the better delivery method in massive, unfractured bedrock. This is particularly true in an aquifer setting with high permeability and little fracturing (such as that found in massive sandstone).
- Down-hole packer systems may be more advantageous in fractured bedrock aquifers.
 - In this case the fracture type, trends, and interconnections should be evaluated and identified.
- Are the injection wells and monitoring wells connected by the same fractures?
- Determine if it is likely that the injection zone is connected to the proposed monitoring points.
- If pressure injection via straddle packers is desired, consideration should be given to the well construction. Specific issues to be considered are:
 - Diameter of the uncased borehole (*will casing diameter allow a packer system to be used under high pressures*?).
 - Diameter of the casing (*same as above*).
 - Strength of the casing (can it withstand the delivery pressures?).
 - Length of screened interval (screened intervals greater than 10 feet will require a straddle packer system).

For further assistance or questions please contact Regenesis Technical Services at 949-366-8000.

