SAFETY:
Pure ORC is shipped to you as a fine powder rated at -325 mesh (passes through a 44 micron screen). It is considered to be a mild oxidizer and as such should be handled with care while in the field. Field personnel should take precautions while applying the pure ORC. Typically, the operator should work upwind of the product as well as use appropriate safety equipment. These would include eye and respiratory protection, and gloves as deemed appropriate by exposure duration and field conditions.

Personnel operating the field equipment utilized during the installation process should have appropriate training, supervision and experience.

GENERAL GUIDELINES:
ORC may be installed in the contaminated saturated zone in the ground utilizing hand augered holes, Geoprobe® type hydraulic punch equipment, or hollow stem augers. This set of instructions is specific for Geoprobe equipment. Alternate instructions may be obtained from the Regenesis Technical Support Department.

For optimum results the ORC slurry installation should span the entire vertical contaminated saturated thickness, including the capillary fringe and “smear zone”.

Two general installation approaches are available. The first is to backfill only the probe hole with slurry. This is a simple approach, in that it is easy, straightforward, and the location of the ORC slurry is precisely known after installation. However, this method requires significantly more probe holes than the alternative, and may take more time for the completion of the remediation process. A separate set of instructions for this method utilizing Geoprobe equipment is available from Regenesis.

The second method is to inject the slurry through the probe holes into the contaminated saturated zone. This method requires fewer probe holes, is less disruptive to the site, and aids the spread of oxygen by spreading the ORC source material. However, it may be difficult to know the exact, final disposition of the ORC installed with this method. This is the method described in these instructions.

Note: It is important that the installation method and specific ORC slurry point location be established prior to field installation. It is also important that the ORC slurry volume and solids content for each drive point be predetermined. The Regenesis Technical Service Department is available to discuss these issues, and Helpful Hints at the end of these instructions offers relevant information. Regenesis also has available Technical Bulletins covering source treatments with ORC.
SPECIFIC INSTALLATION PROCEDURES

1. Identify the location of all underground structures, including utilities, tanks, distribution piping, sewers, drains, and landscape irrigation systems.
2. Identify surface and aerial impediments.
3. Adjust planned installation locations for all impediments and obstacles.
4. Pre-mark the installation grid point locations, noting any that have special depth requirements.
5. Set up the Geoprobe unit over each specific point, following manufacturer recommended procedures. Care should be taken to assure approximate vertical probe holes.
6. Penetrate surface pavement, if necessary, following standard Geoprobe procedures.
7. Drive the 1 1/2” (one-and-one-half inch) pre-probe (part #AT-148B) with the expendable tip (part #AT142B) to the desired maximum depth. Standard 1” (one inch) drive rods (part AT104B) should be used, after the pre-probe. (Hint: Pre-counted drive rods should be positioned prior to the installation driving procedure to assure the desired depth is reached.)
8. Disconnect the drive rods from the expendable tip, following standard Geoprobe procedures.
9. Mix the appropriate quantity of ORC slurry for the current drive point. (See separate “Directions for ORC® Slurry Mixing” and Helpful Hints). **Note: Do not mix more slurry than will be used within a 30 minute period.**
10. Set up and operate an appropriate slurry pump according to manufacturer’s directions. Based on our experience, a Geoprobe model GS-1000 pump is recommended. Connect the pump to the probe grout pull cap (GS-1054) via a 1 inch diameter delivery hose. The hose is then attached to the 1” drive rod with its quick connector fitting. Upon confirmation of all connections add the ORC slurry to the pump hopper/tank.
11. Withdraw the pre-probe and drive stem 4’ (four feet). (Also note Helpful Hints - Operations at end of instructions.)
12. Optional pretreatment step. (See Helpful Hints - Operations at end of instructions). Pump one to two gallons of tap water into the aquifer to enhance dispersion pathways from the probe hole.
13. Pump the predetermined quantity of ORC slurry for the depth interval being injected. Observe pump pressure levels for indications of slurry dispersion or refusal into the aquifer. (Increasing pressure indicates reduced acceptance of material by the aquifer).
14. Remove one 4’ section of the 1” drive rod. The drive rod will contain slurry. This slurry should be returned to the ORC bucket for reuse.
15. Repeat steps 11, 13, and 14 until treatment of the entire affected thickness has been achieved. It is generally recommended that the procedure extend to the top of the capillary fringe/smear zone.
16. Install an appropriate seal, such as bentonite, above the ORC slurry through the entire vadose zone. This helps assure that the slurry stays in place and prevents contaminant migration from the surface. Depending on soil conditions and local regulations, a bentonite seal can be pumped through the slurry pump or added via chips or pellets after probe removal.
17. Remove and decontaminate the drive rods and pre-probe.
18. Finish the probe hole at surface as appropriate (concrete or asphalt cap, if necessary).
19. Move to the next probe point, repeating steps 5 through 18.

HELPFUL HINTS:
A. Physical characteristics
A1. Slurry
The ORC slurry is made using the dry ORC powder (rated at -325 mesh). It makes a smooth slurry, with a consistency that depends on the amount of water used.

A thick, but pumpable, slurry that approaches a paste can be made by using 65-67% solids. This material would normally be used for back-filling a bore or probe hole. It is especially useful where maximum density is desired such as where ground water is present in the hole or there are heaving sands.

Thinner slurries can be made by using more water. Typical solids for the thinner slurries content will range from 35% to 62%. Such slurries are useful for injecting through a probe or bore hole into the saturated aquifer.

As a rule, it is best to mix the first batch of slurry at the maximum solids content one would expect to use. It can then be thinned by adding additional water in small increments. By monitoring this process, the appropriate quantities of water for subsequent batches can be determined.

The slurry should be mixed at about the time it is expected to be used. It is best to not hold it for more than 30 minutes. Thinner slurries, especially, can experience a separation upon standing. All ORC slurries have a tendency to form cements when left standing. If a slurry begins to thicken too much, it should be mixed again and additional water added if necessary.

Care should be taken with slurry that may be left standing in a grout pump or hose. Problems can generally be avoided by periodically re-circulating the slurry through the pump and hose back into the pump’s mixing or holding tank.

A2. Equipment
Most geotechnical grout pumping equipment has a holding tank with a capacity sufficient for injection.

When applying measured volumes of ORC slurry to probe holes, it is sometimes useful to know the volumes and content of the delivery system lines. The following information may be useful in this regard.
Geoprobe pump: At the end of a pump stroke virtually no deliverable slurry remains in the pump.

<table>
<thead>
<tr>
<th>Description</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8” O.D. connecting hose (10 feet long):</td>
<td>0.2 gallons (26 fluid ounces).</td>
</tr>
<tr>
<td>Four foot (4’) length of 1” drive rod:</td>
<td>.04 gallons (5 fluid ounces).</td>
</tr>
<tr>
<td>Three foot (3’) length of 1 1/2” pre-probe:</td>
<td>.03 gallons (4 fluid ounces).</td>
</tr>
</tbody>
</table>
Cleaning and maintenance:
Pumping equipment and drive rods can be lightly cleaned by circulating clear water through them. Further cleaning and decontamination (if necessary due to subsurface conditions) should be performed according to the equipment supplier’s standard procedures and local regulatory requirements.

B. Operating characteristics
B1. Operations - General
Judgment will be needed in the field when injecting ORC slurries. In general, it is relatively easy to inject ORC slurries into sandy soils, and this can usually be accomplished at very moderate pressures. Silts and clays require more pressure, and may accept less slurry.

Careful observation of pressure during slurry pumping is the best indication of the effectiveness of the slurry injection. To test the soil’s ability to accept the slurry and to “precondition” the injection point for the slurry, it is sometimes useful to inject a small volume of plain water prior to the slurry. Normally, one-half (0.5) gallons to two (2) gallons would be appropriate.

During injection, increasing pressure and decreasing flow rate are signs of refusal by the soil matrix to accept the slurry. The site geologist should determine whether to increase pressure, and possibly fracture (“frac”) the soil matrix to achieve ORC slurry installation in a tight site that has refused the slurry at lower pressures.

B2. Fill Volumes
Probe hole back-filling
Probe hole capacities:

<table>
<thead>
<tr>
<th>Per 10' (Ten Foot) Length</th>
<th>Theoretical (Gallons/Fluid Ounces/Cubic Inches)</th>
<th>Operating Volume (Gallons/Fluid Ounces)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand, Silts & Clay</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td>1" Diameter .41 gal/52 fl. oz./94.2 cu. in.</td>
<td>.61 gal/78 fl. oz.</td>
</tr>
<tr>
<td></td>
<td>1 1/2" Diameter .92 gal/117 fl. oz./212.0 cu. in</td>
<td>1.38 gal/176 fl. oz.</td>
</tr>
<tr>
<td></td>
<td>2" Diameter 1.63 gal/209 fl. oz./376.8 cu. in</td>
<td>2.44 gal/313 fl. oz.</td>
</tr>
<tr>
<td></td>
<td>2 1/4" Diameter 2.06 gal/264 fl. oz./476.9 cu. in</td>
<td>3.09 gal/396 fl. oz.</td>
</tr>
</tbody>
</table>

Note that the operating volumes include a 50% excess above the theoretical volume in sands and 25% in clays and silts. This is important to successful treatment. The additional material allows for a small degree of infiltration of the slurry into the surrounding soil and fractures, as well as hole diameter variability. It is important to assure that the entire contaminated saturated zone is treated (including the capillary fringe), since this is often the area of highest pollution concentration. Failure to treat this area due to improper installation can undermine an otherwise successful remediation effort.
For direct assistance or answers to any questions you may have regarding these instructions, contact Regenesis Technical Services at 949-366-8000.

REGENESIS, 2002
www.regenesis.com