Successful Bioremediaton of A Source Area within A Comingled Plume

The uppermost two aquifers underlying a chlorinated ethene source area were treated with Hydrogen Release Compound[®] (HRC) injections. After four years, elevated levels of total organic carbon (TOC) and high rates of complete reductive dechlorination continue to be observed at wells within the treatment area. Over this period, tetrachloroethene (PCE) and trichloroethene (TCE) and their degradation product cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) decreased to below respective cleanup levels. However, the most recent data indicates fluctuations of PCE, TCE, and cDCE concentrations to above cleanup levels. Given the recent fluctuations, it is likely that sorbed fractions of PCE and TCE remain in the source area, continuing to dissolve into the aqueous phase, and the aquifer system has not yet reached equilibrium. Evaluation of source area bioremediation is further complicated by a constant influx of TCE and cDCE from an upgradient, off-site source. A long-term benefit of the source area bioremediation has been an increased rate of natural attenuation of TCE across the downgradient portion of the plume, outside of the influence of the HRC injections.

consulting \cdot engineering \cdot construction \cdot operations

HRC Injections and Monitoring Results

Abstract

treatment area, due to off-site influences from Zone B1 groundwater extraction at the neighboring property. Rising cDCE concentrations have been observed at this well since the HRC injection event (with the exception of the most recent migration of electron donor and cDCE from the treatment area and variations off-site pump and treat system. As TCE and cDCE concentrations stabilize in the

Zone A well. This apparent biodegradation in TCE may be due

The primary release to groundwater was from waste chlorinated solvents stored in a former underground storage tank. Site geology consists of interbedded clay and silty sand with the main water bearing zones occurring in silty sand. The immediate source area was backfilled with gravel to approximately 10 feet below the water table during tank removal activities. Based on favorable results from a natural attenuation study, in situ enhanced anaerobic bioremediation using HRC injections was initiated in 2000 and the groundwater pump and treat system was shut down.

Based on elevated levels of TOC, methane, and ethene in source area wells, methanogenic conditions favorable for complete reductive dechlorination continue four years after the HRC injections.

In Zone A and Zone B1 groundwater, within the treatment area, PCE, TCE, cDCE, and VC were reduced to below site cleanup goals 2 to 3 years after HRC injections.

Recent fluctuations in both Zone A and Zone B1 PCE, TCE, cDCE, and VC concentrations indicate the presence of remaining source area mass, likely sorbed phase PCE and TCE dissolving into the aqueous phase. However, migration of TCE and cDCE from an upgradient off-site source may also be contributing to the recent detections in Zone A.

Source area bioremediation provided enhanced dechlorination of the sorbed phase PCE and TCE by degrading contaminants from the aqueous phase and increasing their driving force for mass transfer; increasing solubility of cDCE and VC greatly increases the maximum aqueous contaminant loading; and generating of metabolic acids from HRC that accelerated dissolution/desorption abiotically (i.e., increasing the solubility limit of PCE and TCE).

Metabolic acid formation affected pH and microbial activity at the Eductor. Addition of dilute sodium hydroxide at Eductor after injections was required to keep pH neutral for optimal microbial activity. The low buffering capacity of the gravel fill around the Eductor contributed to this condition.

A recent increase in the TCE attenuation rate at T-9A may be attributed to co-metabolic anaerobic oxidation with the methane. Methane has recently been detected at this well. As the well was not directly affected by HRC, the source of the methane appears to be migration from the treatment area.

Pawan Sharma (CDM, Walnut Creek, California) Howard Young (CDM, Irvine, California)

Background

Results and Findings